Efficiency Maine Small Business Audit Program

Basic Walk-through Energy Audit provided for:

Town of Lamoine Fire Department

February 17, 2012

The Efficiency Maine Basic Walk-through Energy Audit program is for small businesses in Maine. The objective of the walk-through energy audit is to perform a cursory review of your building envelope, lighting, heating system, air conditioning, domestic hot water and equipment and provide you with a report that identifies energy conservation measures that will guide you in pursuing incentives, programs and help you to save energy.

The energy audit is a guide and will identify measures that are applicable to Efficiency Maine programs listed below:

- PRESCRIPTIVE INCENTIVES Efficiency Maine has calculated fixed or "Prescriptive Incentives" for certain types of equipment that generates consistent savings over a wide range of applications, including: lighting, HVAC equipment, variable-speed motor drives, commercial refrigeration, and agricultural equipment. http://www.efficiencymaine.com/at-work/business-programs/incentive-applications
- <u>SMALL BUSINESS LOAN PROGRAM</u> Efficiency Maine provides loans up to \$35,000, currently at 1% interest, to help small businesses fund approved energy conservation measures of all types: electrical equipment including lighting, machinery, HVAC and refrigeration; heating equipment, regardless of fuel type; insulation. An energy audit identifying recommended energy efficiency measures is required. http://www.efficiencymaine.com/at-work/for-small-business/loan-programs
- **QUALIFIED PARTNERS** is a designation for the most experienced vendors, contractors, suppliers and other professionals that supply or install energy-efficient equipment. These Qualified Partners are familiar with the Efficiency Maine programs, and can help you select qualifying equipment and apply for cash incentives for your energy-efficiency project. http://www.efficiencymaine.com/at-work/qualified-partners

Ask your contractor/qualified partner to work with Efficiency Maine

You or your contractor can call 866-376-2463 with any questions concerning any of the programs above. The Efficiency Maine field staff will work directly with you or your contractor, including visiting the site, to help complete your project!

Table of Contents

Introduction	4
Summary of Recommendations	5
Energy Usage	7
Lighting	11
Building Envelope	14
Heating System	16
Domestic Hot Water	19
Appendix A: Lighting Incentives	21

DISCLAIMER

The contents of this report are offered as guidance. The auditor does not (a) make any warranty or representation, expressed or implied, with respect to accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report does not infringe on privately owned rights; (b) that the information apparatuses and processes disclosed in the report are suggestions that require a more complete technical and specific analysis depending upon which suggested approaches are utilized. Mention of trade names or commercial products does not constitute endorsement or recommendation of use. More in depth technical analyses and cost estimates may be suggested. Qualified and properly licensed personnel, in accordance with all state and federal codes and laws, should safely perform any work. All hazardous materials or other materials regulated by law (such as fluorescent lamps and ballasts) should be disposed of safely and properly according to state and federal laws.

SITE DESCRIPTION & INTRODUCTION

Business name: Town of Lamoine, Fire Department

Physical address: 606 Douglass Highway

Contact person: Stu Marckoon 207-667-2248

Email: town@lamoine-me.gov

Building Sq. Ft.: 5,280

Employees:

Hours of operation:

Business Type:Public Safety, GovernmentAuditor:Richard (Dick) FortierAudit Date:February 7, 2012

Introduction:

The Fire Department building constructed in the early 1990's is wood framed with six inches of fiberglass insulation in the walls and twelve inches in the ceiling. Windows are double pane casement and lighting is fluorescent consisting of strip fixtures and troffers.

SUMMARY OF RECOMMENDATIONS

Energy Conservation Measures (ECMs) recommended for immediate implementation:

- Consider lighting upgrades by replacing the inefficient T-12 fluorescent lighting. Efficiency Maine cash incentives apply.
- It was reported that the existing boiler heat transfer coil has failed and boiler is being considered for replacement. See the estimated comparison of a new fuel oil vs. propane fired boiler in heating section.
- Repair doors frames and weatherstripping

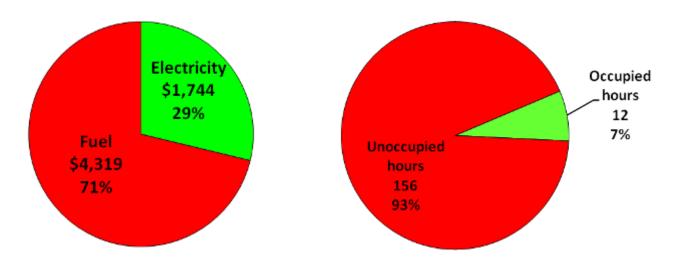
The energy conservation measure (ECM) recommendations below are based on the walk-through audit of the facility, equipment data plates and the reported estimated building and equipment use.

Estimated Energy Conservation Measures									
	Estimated kWh Savings	Estimated Fuel Oil Savings gals	Estimated Propane Savings gals	Estimated Annual Savings \$ (A)	Estimated Capital Cost (B)	Potential Incentive (C)	Estimated Cost to Business (B) - (C)	Estimated Payback (B) - (C) / (A)	
Cost per kWh and Fuel	\$0.169	\$4.00	\$2.16					Years	
Follow Lighting Recommendations	1,060	0	0	\$180	\$3,230	\$425	\$2,805	15.6	
	Estimated kWh Savings	4	Estimated Propane Savings gals	Estimated Annual Savings \$	Estimated Capital Cost	Incentive	Estimated Cost to Business	Estimated Combined Payback	
Totals	1,060	0	0	\$180	\$3,230	\$425	\$2,805	15.6	
Estimated Annual Btu savings	3,616,720	0	0	Total Estimated Btu Savings		3,616,720	Btu's		
Estimated Annual Carbon Savings	0.8	0.0	0.0	Total Estir	nated Carbo	on Savings	0.8	Metric Tons	

It is noted that the simple payback for the lighting is over 15 years. This is due to minimal use of the existing lighting. If your lighting use increases, then you may want to consider upgrading your lighting.

ECM Table Notes

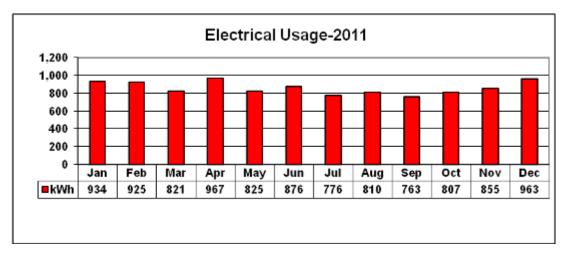
- Please note that some of the energy conservation measures identified in this report may require professional services to implement.
- The ECM estimates are based on the building conditions observed during the
 audit, the reported building usage and the submitted energy consumption records.
 These ECM's have been recommended for planning purposes only. You must
 verify through a contractor, supplier, or a professional that the proposed ECM,
 product and/or equipment will meet the criteria for Efficiency Maine cash
 incentives.
- It is your responsibility to determine installation, equipment and labor cost for all estimated ECM's before proceeding. Every effort was made to assure accuracy of the estimated results, however, they do not represent or guarantee, or assume or accept, that these savings, capital cost or simple paybacks will be achieved.
- Please remember that this is a basic walk-through energy audit. Cost estimates were not done based on any design or engineering. They are conceptual only and can be +/- 15%. Professional services may be required to enable an accurate estimate.


If you do not know where to start then contact your contractor or any of the numerous trained Efficiency Maine Qualified Partners who can assist you with your energy conservation projects.

It is simple to locate a qualified partner simply by going to the following web site and putting in your zip code. http://www.efficiencymaine.com/at-work/qualified-partner-search

ENERGY USAGE

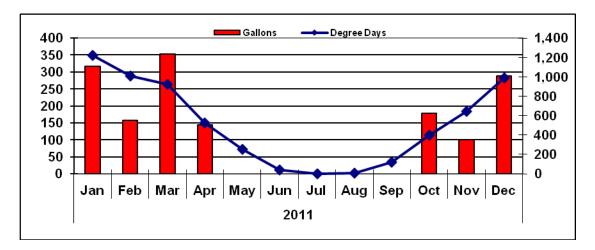
Below is the breakdown and comparison of the energy usage for 2011. Fuel oil expense exceeds electrical costs by 42 percent. Also on a weekly basis, the unoccupied hours exceed occupied hours by 86 percent.


The table below compares your building to the Department of Energy's Northeast Average for Commercial Buildings. The average Northeast building uses .23 gallons per square foot and your building is at .29 gallons per square foot.

Department of Energy Fuel Oil Comparison					
Commercial Buildings Energy Efficiency	Northeast Average	Lamoine Fire Dept.			
		5,280			
	Btu's / SF /year	Btu's / SF/ year			
Space heating Fuel oil Btu's	32,000	40,807			
	Gal / SF / Yr	Gal / SF / Yr			
Space heating Fuel oil gallons	0.23	0.29			
* http://www.eia.doe.gov/emeu/reps/abstracts/northeast.html#Commercial					
Note that Northeast average includes New Jersey to Maine					

Kilowatt hour (Kwhr) usage is itemized below followed by a graph depicting electrical usage by month for 2011. Yearly, the Lamoine Fire Department consumed 10,322 Kwhr's at a cost of \$1,744, averaging \$145 per month and a gross cost of \$.169 per kWh.

Profiling usage in this manner allows for review by the month and season and visually highlights potential problems. For example, we see the heating season ramp up in October through February with another small spike in April (although not sure if the reported kWh amount is accurate), then drops somewhat for the summer months.


Lamoine Fire Department						
Electricity Usage						
	kWh	Cost				
Jan	934	\$163.42				
Feb	925	\$146.51				
Mar	821	\$169.16				
Apr	967	\$142.80				
May	825	\$150.80				
Jun	876	\$123.73				
Jul	776	\$140.19				
Aug	810	\$138.31				
Sep	763	\$132.81				
Oct	807	\$139.72				
Nov	855	\$147.25				
Dec	963	\$148.88				
Total	10,322	\$1,744				
Monthly Avg's 860		\$145				
Α	vg \$/kWh	\$0.169				

<u>Fuel Oil:</u> Number 2 fuel oil consumption for 2011 was 1,539 gallons for a total cost of \$4,319. Average gross price for the year was \$2.81 per gallon. Oil consumption for 2011is itemized and graphed below.

Lamoine Fire Department							
		Fuel Us	age				
		Gallons	Cost	Degree Days			
2011	Jan	317.00	\$790.93	1,221			
	Feb	158.00	\$394.59	1,012			
	Mar	353.00	\$882.15	920			
	Apr	144.00	\$368.30	524			
	May			252			
	Jun			40			
	Jul			0			
	Aug			6			
	Sep			120			
	Oct	178.00	\$592.28	397			
	Nov	101.00	\$334.66	641			
	Dec	288.00	\$956.16	989			
	Total	1539.00	\$4,319				
Month	ly Avg	219.86	\$617				
	Avg c	ost per gal	\$2.81				

For your information: What are annual Heating Degree Days (HDD)? Heating degree days are calculated by how much colder the average temperature is than 65°F on a given day.

A system in control and with minimum standby losses, the fuel consumption (red bars) would closely follow the heating degree day curve (blue line).

You will note that the fuel consumed during very cold months falls below the blue degree day curve. This means that your heating controls are most likely set back on a regular basis which is saving energy. It is important to note that fuel oil consumption is a function of fuel deliveries that may lead to a misinterpretation of actual consumption.

LIGHTING

Comments:

- Existing lighting in the office, truck bays and meeting room areas consists of original T-12 lamps and magnetic ballast.
- Lamps have been upgraded to energy efficient lamps.
- There are no automatic lighting controls in the building.

Recommendations:

- Retrofit the existing fixtures with <u>High Performance T8 lamps and electronic ballast.</u>
- Efficiency Maine lighting incentives apply and can be found in Appendix A and at
 - http://www.efficiencymaine.com/docs/at_work/910PrescLightingApRetrofit.pdf

The table below is the estimated savings that may be achieved by upgrading your lighting.

	Estimated Annual Lighting Savings											
			# of	Watts per	Max Total		# of	Annual Operating	Annual Total	Annual kWh	Potential Annual	Annual kWh
	Location	Fixture type	units	Unit	kW	Week	Weeks	Hours	kWh	Cost	Savings	Saved
Existing	Meeting Room	2' x 4' 4-Lamp T12 w/Magnetic Ballast	9	160	1.44	20	52	1040	1,498	\$0.169 \$253		
Retrofit		2' x 4' HP* 4-Lamp T8 w/Electric Ballast	9	118	1.06	20	52	1040	1104	\$187	66	393
Existing	Main Floor	8' 2-Lamp T12 w/Magnetic Ballast	17	138	2.35	20	52	1040	2,440	\$412		
Retrofit		8' 2-Lamp HP* T8 w/Electronic Ballast	17	109	1.85	20	52	1040	1927	\$326	87	513
Existing	Dispatch & Chief	2' x 4' 4-Lamp T12 w/Magnetic Ballast	2	173	0.35	20	52	1040	360	\$61		
Retrofit		2' x 4' HP* 4-Lamp T8 w/Electric Ballast	2	109	0.22	20	52	1040	227	\$38	22	133
Existing	Stairs	4' 2-Lamp T12 w/Magnetic Ballast	1	80	0.08	20	52	1040	83	\$14		
Retrofit		4' HP 2-Lamp T8 w/Electronic Ballast	1	60	0.06	20	52	1040	62	\$11	4	21
Existing	Outside	150 W HPS Wallpacks	3	188	0.56	82	52	4264	2,405	\$406		
Retrofit		No change										
						nnual avings			Annual Total kWh	Annual kWh Cost	Potential Annual Savings	Annual kWh Saved
	Estima	ted Annual Lighting Us	age ar	nd Cost	1	.6			6,785	\$1,147		
							Estima	ted Annual	Lighting	Savings	\$179	1,060
		urposes only. Always con			• •						ur facility.	
		are based on a general w		_			•		_			

Detailed energy savings should be determined by your electrician, supplier or manufacturer before a purchase is completed.

Your electrician, supplier or manufacturer must confirm that the proposed lighting meets the Efficiency Maine prescriptive cash incentives.

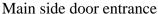
You can find Efficiency Maine incentives at www.efficiencymaine.com/pdfs/Prescriptive-Cash-Incentives.pdf.

* High Performance

Below is the estimated cost, savings and simple payback to replace the fire station lighting.

Lighting Estimate							
	Qty	Cost each	Total				
Re-Lamp & Ballast Meeting Room	9	\$40	\$360				
Electrician	9	\$55	\$495				
Re-Lamp & Ballast Truck Bays	17	\$50	\$850				
Electrician	17	\$55	\$935				
Re-Lamp & Ballast Dispatch & Chief's Office	2	\$50	\$100				
Electrician	2	\$55	\$110				
Re-Lamp & Ballast Stairs	1	\$50	\$50				
Electrician	1	\$55	\$55				
Contingency	5	\$55	<u>\$275</u>				
Estimated ins	talled capi	tal cost	\$3,230				
Efficiency Maine Incentive Lighting	17	\$25	\$425				
Estim	ated Incent	tive total	<u>\$425</u>				
Cost to Implement (capita	l cost-ince	entives)	\$2,805				
Estimated annual electrical savings kWh	1,060	\$0.169	\$179				
Estimated annual electrical d	emand sav	ings kW	<u>\$0</u>				
Estimated annual electrical savings							
Simple Payback in Years							
Labor for replacing lamps is estimated at .75 hour per fixture.							
Labor for sensors included with lighting labor.							
Quote for lighting provided by Gilman Electric in Newport 36	88-4306.	-					

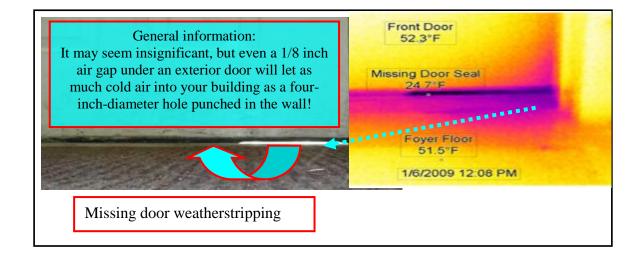
BUILDING ENVELOPE


Comments:

- The building walls are insulated with six inches of fiberglass insulation.
- Ceiling is estimated to have 12 inches of fiberglass insulation.
- The windows are all double pane.

Recommendations:

- Inspect and repair the door weatherstripping as needed.
- Main side door should be replaced, door frame is sprung.
- 2nd floor meeting room door requires major weatherstripping



2nd floor meeting room door

Below is a typical commercial entry door with missing weatherstripping on a cold 25 $^{\circ}$ F January day--note the temperature at sill with the weather stripping missing is 24.7 $^{\circ}$ F.

Comment:

- Hose drying shaft appears open at the top right.
- Fiberglass over the top.
- Shaft acts as a chimney exhausting heated air from the building and exhausting through the attic ventilation.

Recommendation:

- From the attic close off the very top right side of the shaft (top right). (Picture is not clear.)
- Remove the fiberglass insulation from the top and install plywood to cover opening.
- Insulate the shaft from the outside using ridged insulation on the exterior of the shaft walls.

Comment:

• Attic used as storage, compressing insulation negating some of its R-value.

Recommendation:

Remove all material for the attic and re-fluff the fiberglass insulation.

HEATING SYSTEM

Please note that the energy conservation measures identified in this section may require professional services to implement.

Comments Boiler

- Heat is provided by System 2000 hydronic boiler.
- It was reported that the heat transfer coil has been compromised and a new boiler will be required.
- There is a Carlin burner that fires at a rate of 1.2 gallons per hour.
- Heat distribution for the building is provided by an in-floor radiant heat system.
- The boiler heats an 80 gallon storage tank and then the heated water is distributed to the radiant floor zones see pictures below.

Recommendations

- It was reported that the heat transfer coil has been compromised and a new boiler will be required.
- New boiler should include an outside temperature reset control that can provide up to 5-10% additional savings.
- Consider as an alternative replacing the failed oil fired system with a high efficient propane boiler.
- Propane may be advantageous since there is radiant floor heating in place which requires a lower water temperature
- High end fuel oil burners are rated at 85% efficiency whereas propane can achieve 90-95% efficiencies.
- Propane burners can modulate whereas fuel oil cannot.
- Be sure that a mechanical heating professional calculates the potential savings that may be achieved by switching from fuel oil to propane.
- Propane burns cleaner requiring cleaning every two to three years.
- 5 to 10% is the estimated reduction in fuel consumption that may be achieved by installing a higher efficient propane boiler.

• It is important to note that fuel oil has a Btu value of approximately 140,000 Btu's per gallon vs. 90,000 Btu's per gallon for propane thereby impacting the percentage of savings.

The table below indicates your fuel oil consumption and cost for 2011. The table also is useful for projecting heating cost using the percentage of savings and the escalating cost of fuel oil per gallon.

If you replace your existing boiler with an oil-fired unit (@ 85% efficiency) with reset temperature controls, then you may see 5-10% percent in savings (based on the actual efficiency of the old boiler). The area highlight in red indicates your potential savings at current prices and you see the escalated savings to the right as the prices of oil increases.

Estimated Fuel Oil Savings Based on Cost Per Gallon							
Gallons of fuel oil used in 2011	1,539	21	5,460,000	Btu's			
Fuel oil cost per gallon	\$2.81	\$3.00	\$3.25	\$3.50	\$4.00		
Annual Fuel oil cost	\$4,325	\$4,617	\$5,002	\$5,387	\$6,156		
5 percent savings	\$216	\$231	\$250	\$269	\$308		
10 percent savings	\$432	\$462	\$500	\$539	\$616		
15 percent savings	\$649	\$693	\$750	\$808	\$923		
20 percent savings	\$865	\$923	\$1,000	\$1,077	\$1,231		
30 percent savings	\$1,297	\$1,385	\$1,501	\$1,616	\$1,847		

Below is a typical estimated cost, savings and simple pay back. This typical estimate is based on an 85% efficient fuel oil boiler with an air temperature reset control and 10% savings of the 2011 fuel oil consumption at \$4 per gallon.

Estimated Boiler Replacement Simple Payback								
Equipment/Labor	Labor Qty		Total					
Install New High Efficent Boiler	1	\$5,000	\$5,000					
Labor	24	\$70	\$1,680					
Contingency and commission	4	\$70	\$280					
Removal and Disposal	1	\$1,000	\$1,000					
Estimated installed capital cost			\$7,960					
Fuel oil savings based on new fuel oil								
boiler ~10% of 2011	154	\$4.00	<u>\$616</u>					
Simple pay back in years (cost / savings)								

Below is a typical estimated cost, savings and simple pay back. This typical estimate is based on a 90% efficient propane boiler with an air temperature reset control and 5% savings of the 2011 fuel oil consumption at \$4 per gallon.

Estimated Boiler Replacement Simple Payback								
Equipment/Labor	Qty cost each		Total					
Install New High Efficent Propane Boiler	1	\$5,000	\$5,000					
Labor	24	\$70	\$1,680					
Propane tank and piping	1	\$1,000	\$1,000					
Contingency and commission	4	\$70	\$280					
Removal and Disposal	1	\$1,000	\$1,000					
Estimated installed capital cost	•		\$8,960					
Service call savings per year	1	\$300	\$300					
Fuel oil savings based on new 90%								
Propane boiler (~5% of 2011's fuel oil								
@ \$4 /gal)	77	\$4.00	<u>\$308</u>					
Simple pay back in	years (cost	/ savings)	14.7					

A third option is to replace the failed heat transfer coil and add an outside temperature reset control.

It is noted that the original boiler's efficiency was most likely at approximately 75-80%. It is also noted that fuel oil provides more Btu's per gallon (oil ~ 140,000 vs. Propane ~90,000 Btu's/gal).

It is your responsibility to determine installation, equipment and labor cost for all estimated ECM's before proceeding. Every effort was made to assure accuracy of the estimated results, however, they do not represent or guarantee, or assume or accept, that these savings, capital cost or simple paybacks will be achieved.

Please remember that this is a basic walk-through energy audit. Cost estimates were not done based on any design or engineering. They are conceptual only and can be +/- 15%. Professional services may be required to enable an accurate estimate.

DOMESTIC HOT WATER

Comments:

- Hot water is provided by a indirect storage tank that is heated by the boiler and stored in a 20 gallon SuperStor tank.
- This is a new tank and will be connected to the new boiler when installed.

The table below is the estimated hot water use and gallons of hot water on a yearly basis.

E	Estimated Hot Water Demand						
Fixture	Units	Gals per minute	mins / day	gals / day	days / year	Gal Year	
Restroom sink	1	2	4	8	50	400	
Meeting room sink	1	1	4	4	50	200	
						0	
		Es	timated to	tal gallons	s per year	600	
Days per year hot water is used					50		
Estimated gallons of hot water used per day					12		
These are estimates based on the number of fixtures and reported estimated use							

In summary, there are a number of energy reducing consumption opportunities identified for your building. I hope you take the opportunity to review and investigate these potential savings opportunities. For specific questions or comments regarding this report, you may contact:

Richard (Dick) Fortier (207)-453-4485 rfortier2@myfairpoint.net

or

AJ Ballard Certified Energy Manager (207)-522-7927 aj@bravozuluenergy.com

or

Elizabeth Crabtree
Program Director
Efficiency Maine
151 Capitol Street, Suite #1
Augusta, ME 04330
207-213-4156

elizabeth.crabtree@efficiencymaine.com

American Recovery and Reinvestment Act

Appendix A

Lighting incentive application can be found at:

http://www.efficiencymaine.com/docs/at_work/910PrescLightingApRetrofit.pdf

	efficiency						
	Lighting Incentives						
L10	HPT8 Relamp & Reballast - Existing fixture	\$12.00	Per Fixture Per				
L10.1	Reduced Wattage HPT8 Lamp & Ballast - Retrofit	\$12.00	Fixture				
L15	New Fluorescent Fixtures - Retrofit	\$25.00	Per Fixture Per				
L16	New Fluorescent Fixtures - New construction	\$10.00	Fixture				
L20	Fluorescent Fixtures with Reflectors	\$25.00	Per 8' Section Per				
L25	Compact Fluorescent Hard-wired Fixtures	\$12.00	Fixture				
L30	High-Efficiency Fluorescent Fixtures - Retrofit	\$35.00	Per Fixture				
L30.1	High-Efficiency Fluorescent Fixtures - Reduce Wattage	\$35.00	Per 4' Section				
L32	Low-Glare High-Efficiency Recessed Fixture - Retrofit	\$50.00	Per Fixture				
L32.1	Low-Glare High-Efficiency Recessed Fixture - Reduced Wattage	\$50.00	Per Fixture				
L33	Low-Glare High-Efficiency Recessed Fixture - New construction	\$35.00	Per Fixture				
L35	Pendant Mounted Indirect Fluorescent Fixtures	\$35.00	Per 4' Section				
L40	High-Intensity Fluorescent (H.I.F.) - Retrofit	\$65.00	Per Fixture				
L60	Fixture Mounted Occupancy Sensor	\$40.00	Per Fixture Per				
L70	Occupancy Sensors - Remote mounted only	\$50.00	Control				
L71	Vacancy Sensors	\$25.00	Per Control Per				
X10	LED Exit Signs - Retrofit only	\$10.00	Sign				

efficiency		
Efficiency Maine LED Lighting Incentives		
S10	Outdoor pole/arm-mounted LED streetlight or parking light fixture	\$175.00 per fixture
S12	Outdoor wall-mounted LED area fixture (wallpack) must be DesignLights approved	\$175.00 per fixture
S14	LED parking garage fixturemust be DesignLights approved	\$175.00 per fixture
S20	Recessed, surface and pendant-mounted LED downlight must carry Energy Star label	\$35.00 per fixture
S30	Refrigerated case LED light fixturemust be DesignLights approved	\$75.00 per door \$100.00 per door with occupancy sensor
S40	Screw-in LED lampsmust carry Energy Star label	\$20.00 per lamp
http://www.efficiencymaine.com/docs/at_work/910PrescLightingApRetrofit.pdf		